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ABSTRACT
Objective: To investigate the variability in the expression profile of genes associated with polymyositis (PM), explore the poten-
tial molecular mechanisms underlying PM, and predict novel targets for intervention.
Study Design: Descriptive study.
Place and Duration of the Study: Department of Rheumatology, Taizhou Municipal Hospital, Taizhou, China, from August to
November 2023.
Methodology: Three microarray datasets (GSE3112, GSE39454, and GSE128470) were extracted from the gene expression
omnibus (GEO). The analysis of this research involved identifying the differentially expressed genes (DEGs) in PM compared to
normal  samples.  Enrichment  analysis,  gene-microRNA,  gene-transcription  factor  (TF),  and  protein-protein  interaction  (PPI)
network studies were conducted to identify hub genes and relevant pathways. Additionally, the drug-gene interaction database
(DGIdb) was used to predict therapeutic medications.
Results: Eighty-eight DEGs were identified. The enrichment analysis results highlighted the significant involvement of downregu-
lated DEGs in antigen processing and presentation. Based on the PPI networks, seven hub genes with high connectivity degrees
were selected including a  cluster  of  differentiation 74 (CD74),  human leukocyte antigen (HLA)-DPA1,  HLA-B,  guanylate-binding
protein 1 (GBP1), recombinant 2', 5'-oligoadenylate synthetase 1 (OAS1), HLA-C, and HLA-E.
Conclusion: This research screened-out core genes, projected prospective therapeutic medications, discovered DEGs between
PM  and  normal  samples,  and  offered  fresh  perspectives  for  additional  research  into  the  possible  mechanism  and  therapeutic
targets of PM.
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INTRODUCTION

Polymyositis (PM) is a type of systemic autoimmune illness
that causes skeletal muscle inflammation over time. PM shows
bilateral symmetrical weakness of the pharynx, neck muscles,
and proximal limb muscles that lasts for weeks to months.
The  disease  may  progress  from  musculoskeletal  system
involvement to heart, skin, or lung involvement.1 PM is twice
as  frequent  in  women  as  in  men,  and  its  one  in  100,000
aetiologies  probably  combine  environmental  and  genetic
risk  factors.1
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Currently, routine clinical medication of PM includes steroids,
methotrexate,  azathioprine,  calcineurin  inhibitors,  myco-
phenolate  mofetil,  cyclophosphamide,  rituximab,  and Janus
kinase  (JAK)  inhibitors.  Although  these  agents  have  certain
curative effects, there are still some problems, such as poor
relief of symptoms in some patients.1 In order to identify the
hub gene and the differentially expressed genes (DEGs), thus it
should be planned to extract the original microarray dataset
from the gene expression omnibus (GEO), as well as the devel-
opment of protein-protein interaction (PPI) network. The objec-
tive of this study was to investigate the variability in the expres-
sion profile of genes associated with PM, explore the potential
molecular  mechanisms  underlying  PM,  and  predict  novel
targets for intervention.

METHODOLOGY

The  gene  expression  datasets  GSE39454,  GSE128470,  and
GSE3112 were obtained from the GEO-NCBI database.2,3 The
GSE39454 dataset was collected using the GPL570 platform
(HG-U133_Plus_2;  Affymetrix  human genome U133  Plus  2.0
array) and consisted of eight samples from PM patients and five
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normal samples. The GSE128470 dataset, on the other hand,
used  the  GPL96  platform  (HG-U133A;  Affymetrix  human
genome U133A array) and included information from seven PM
patients  and  twelve  normal  samples.  Furthermore,  the
GSE3112  dataset  also  used  the  GPL96  platform,  comprised
data from six PM samples and eleven normal samples.

To detect shared DEGs among normal and PM samples, the
GEO2R web-based analytical tool offered by NCBI was used.
This tool allowed the authors to generate a table of DEGs, which
were then ranked by their significance in each gene expression
profile. The thresholds were set at p <0.05 and |log2FC| ≥1.0 to
ensure  the  inclusion  of  highly  relevant  DEGs.  To  further
analyse the overlapping DEGs across the three datasets, the
online tool called Draw Venn diagram available at http://bio
informatics.psb.ugent.be/webtools/Venn/ was used. This tool
aided the authors in constructing a Venn diagram that visually
displayed the shared DEGs among the samples.  To examine
the biological function of the DEGs between PM and normal
samples, various analyses were performed. Firstly, a compre-
hensive assessment incorporating terms related to biological
processes,  cell  components,  and  molecular  functions  were
conducted.4  Additionally,  for  pathway  enrichment  analysis,
Kyoto Encyclopaedia of Genes and Genomes (KEGG) was used.5

To further enhance the understanding of the DEGs, the ClueGO
plug-in into Cytoscape was introduced, enabling the integration
of gene ontology (GO) terms and the creation of back propaga-
tion (BP) networks.6

The PPI network of the DEGs by using STRING was constructed,
the available access is http://www. string-db.org/, considering a
typical criterion of combined score p >0.4. Subsequently, the
PPI network through Cytoscape software was visualised.7 To
identify  significant  modules,  molecular  complex  detection
V1.5.1  was  employed,  a  plug-in  in  Cytoscape.8  Additionally,
Cytohubba, which encompasses 12 different approaches was
used to explore key nodes and determine the hub genes based
on the PPI  network.9  To ascertain the most crucial  essential
genes, the top 15 genes identified by each topological approach
that were common to at least six methods. Finally,  the hub
genes  as  those  shared  by  the  three  methods  (PPI  network,
MCODE, and topological algorithm analysis in cytoHubba) were
identified.

An analysis was performed on the connections between target
genes at the post-transcriptional level and miRNA or gene-tran-
scription factor (TF) expression in several illness situations.10,11 The
miRNA-mRNA interaction networks were predicted with miRTar-
Base  (http://mirtarbase.mbc.nctu.edu.tw/php/download.  php),
miRDB (http://www.mirdb.org/), and miRWalk (http://mirwalk.um-
m.uni-heidelberg.de/).  The  NCBI  and  PROMO  (http://alggen.l-
si.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3)
were also used to predict TFs. The target gene-miRNA and gene-TF
network were visualised using Cytoscape software.

Finding the genes linked to a disease and developing tailored
medications for these genes is the ultimate objective of many

illness  investigations.  DGIdb  V3.0.2  with  available  access
http://www.dgidb.org was used to predict potential medication
interactions with the DEGs.12 Cytoscape was used to show the
drug-gene interaction network.

RESULTS

To acquire a roster of DEGs linked with PM, a comparison of gene
expression profiles in muscle tissues between individuals diag-
nosed with PM and healthy volunteers was conducted. Based on
pre-determined  criteria,  1,218  DEGs  from GSE39454,  1,517
DEGs from GSE128470,  and 2,510 DEGs from the GSE3112
were identified. From the results of the volcano plot, the DEGs
were identified from the above datasets using the criteria p
<0.05 and |log2FC|  ≥1.0 Figure 1(A)-1(C).  By analysing the
dataset GSE39454, it was found that there were 653 genes that
exhibited upregulation and 565 genes that showed downregula-
tion.  In the case of  GSE128470, there were 127 genes with
upregulation and 1,390 genes with downregulation. Similarly,
GSE3112 had 66 upregulated genes and 2,444 downregulated
genes. To determine the common DEGs, a Venn analysis was
performed as shown in (Figure 1D and E). In total, there were 88
DEGs that were common among all three comparisons. Among
these,  four  genes  were  significantly  upregulated,  while  84
genes displayed downregulation.

To conduct a more in-depth analysis of the BPs implications
related  to  the  84  downregulated  DEGs,  the  ClueGO  plug-in
within  Cytoscape  software  was  used.  This  tool  allowed  the
authors to group the genes based on their gene ontology (GO)
terms, which provided insights into their involvement in specific
biological  functions.  Moreover,  the  authors  employed  it  to
depict the connections within each cluster and those between
different groups, as depicted in (Figure 1G and F).

The GO analysis showed a significant enrichment of downregu-
lated DEGs in various BPs. These processes included the presen-
tation and processing of peptide antigens (GO:0048002), the
cellular  response  to  interferon-gamma  (GO:0071346),  pro-
moting  lymphocyte  proliferation  (GO:0050671),  enhancing
mononuclear cell proliferation (GO:0032946), cytokine release
(GO:0050671), controlling complement activation (GO:0030449),
promoting  chemokine  production  (GO:0032722),  and  sup-
pressing viral  processes (GO:0048525).  Moreover,  the candi-
date  DEGs  were  mainly  enriched  in  major  histocompatibility
complex (MHC) protein complexes (GO:0042611), the luminal
side of the endoplasmic reticulum membrane (GO:0098553), ER
to  Golgi  transport  vesicle  membranes  (GO:0012507),  blood
microparticles  (GO:0072562),  platelet  alpha  granule  lumens
(GO:0031093), and multivesicular bodies (GO:0005771) within
cellular  components  (CC).  Importantly,  downregulated  DEGs
exhibited significant enrichment in MHC protein complex binding
(GO:0023023), immune receptor activity (GO:0140375), chemo-
kine receptor binding (GO:0042379), and proteoglycan binding
(GO:0043394) within molecular function (MF). Additionally, the
KEGG pathway  analysis  revealed  the  distribution  of  DEGs  in
antigen processing and presentation.
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Figure  1: Identification of DEGs and GO term enrichment, KEGG pathway analysis of DEGs. Volcano plot showing the differentially expressed
genes identified from the (A) GSE39454, (B) GSE128470, and (C) GSE3112 datasets. Venn diagram of common DEGs identified from the three
gene expression profiles: (D) 4 DEGs were upregulated in the three datasets, and (E) 84 DEGs were downregulated in the three datasets.
(F) Significantly enriched GO terms among the DEGs in the following three functional groups: MF, BP, and CC. (G) KEGG pathways analysis of
DEGs. Nodes were coloured according to grouping of related functions based on statistically significant association of related GO terms. In
each group, only the most significant term is labelled, and the node size corresponded to the significance of each GO term.

Figure 2: Identification of hub genes and analysis of targeting TFs of DEGs. (A) Protein-protein interaction (PPI) network of 84 downregulated
DEGs. (B) Core module (module 1 with an MCODE score of 8) from the PPI network. The colour shadow of each node represents the MCODE
score (degree of connection of nodes). (C) Target gene-miRNA network. The yellow rectangle nodes are the genes, and purple ellipse nodes
are the miRNAs. (D) Target gene-TF network. The yellow ellipse nodes are the genes, and blue rectangle nodes are the TFs. (E) Drug-gene
interaction network. The purple circle nodes are the genes. The diamond nodes are the drugs, which are distinguished by yellow, orange and,
red colours according to degree.
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As  shown  in  Figure  2(A),  the  interaction  network  of  DEGs
acquired using STRING encompassed 22 genes with reduced
expression  grouped  together  in  a  cluster  comprising  75
nodes  and  222  edges.  Figure  2(B)  exhibited  the  imple-
mentation of MCODE to recognise the most notable module,
which included 10 nodes, all of which were DEGs with down-
regulated  expression  (MCODE  score  =  8).  From  each
CytoHubba analysis approach, the top 15 pivotal genes were
opted and discovered that more than six topological analysis
methods  identified  a  total  of  15  hub  genes.  In  summary,
seven  key  genes  were  identified  by  all  three  analyses:
Cluster of differentiation 74 (CD74), human leukocyte antigen
(HLA)-DPA1,  HLA-B,  guanylate-binding  protein  1  (GBP1),
recombinant 2',5'-oligoadenylate synthetase 1 (OAS1),  HLA-
C, and HLA-E.

There  were  six  primary  DEGs  that  were  subjected  to
regulation  by  microRNAs  (miRNAs).  These  DEGs  included
ZFP36L2,  which  was  targeted  by  a  total  of  24  miRNAs;
GPR137B,  influenced by  23 miRNAs;  ARL4C,  affected by  19
miRNAs;  PRUNE2,  influenced  by  18  miRNAs;  RBM47,
modulated  by  16  miRNAs;  and  MARCKSL1,  impacted  by  13
miRNAs.  Among  these  miRNAs,  hsa-miR-27a-3p  seemed  to
possess  the  highest  regulatory  control  over  three  DEGs
(Figure 2C). On the other hand, the TFs targeted the top five
DEGs  in  significant  numbers.  ARHGDIB,  for  instance,  was
regulated by 36 TFs, while UCP2  was modulated by 35 TFs.
Additionally,  ARL4C,  UBE2L6,  and  HLA-DPA1  were  each
influenced  by  34  TFs  (Figure  2D).

To  identify  prospective  therapeutic  agents  or  chemical
entities  capable  of  restoring  the  decreased  expression  of
DEGs in PM, DGIdb was used. Based on the network of drug-
gene  interactions  (Figure  2E),  amoxicillin,  clavulanic  acid,
and floxacillin were identified as molecular compounds that
were predicted to regulate the expression of HLA-DRA, HLA-
B, and HLA-C. Zinc chloride and methyldopa were predicted
to affect the differential  expression of FN1,  C1S,  and C1QB.
Additionally,  24  drugs  or  molecular  compounds,  such  as
erlotinib and glyburide, were found to interact with SLCO2B1
and agmatine was also identified.

DISCUSSION

PM is a refractory systemic autoimmune disease. The patho-
genesis,  phenotype,  and  progression  of  PM  are  believed  to
be  influenced  by  the  intricate  interplay  of  several  genetic
and  environmental  factors.  There  is  still  a  need  for  further
exploration into the pathogenesis and treatment of PM.

During this study’s scientific investigation, a combination of
bioinformatics  strategies  was  utilised  to  assist  in  the
examination of crucial alterations in gene expression. Three
GEO  datasets:  GSE39454,  GSE128470,  and  GSE3112  were
conducted  to  unveil  potential  pathways  related  to  muscle
tissue.  Through  this  approach,  a  total  of  88  DEGs  were

identified successfully. Among these DEGs, 84 were found to
be downregulated, while 4 displayed upregulation.

Through functional enrichment analyses, the effect of down-
regulated  DEGs  was  clarified.  The  significance  of  antigen
processing  and  presentation  among  the  DEGs  was
highlighted  by  the  enriched  GO  terms  identified  through  a
comprehensive  analysis  of  GO  enrichment.  Consistent  with
previous  evidence,  the  enrichment  analysis  also  revealed a
significant association between HLA alleles and most of  the
GO terms, indicating the critical role of HLA molecules in PM
pathogenesis.  The  authors’  analysis  of  MF  corresponds  to
the  prior  research,  as  it  pinpointed  MHC  protein  complex
bonding  as  the  foremost  significant  GO  term.  Additionally,
the enrichment analysis of KEGG revealed the importance of
the  pathway  for  complement  and  coagulation  cascades-a
pathway  vital  for  a  multitude  of  cellular  functions.

Seven hub genes, CD74, HLA-DPA1, HLA-B, GBP1, OAS1, HLA-
C,  and  HLA-E,  were  identified.  All  of  these  hub  genes  were
downregulated in PM. CD74,  the invariant chain found within
the MHC class II complex, is a glycoprotein that traverses the
cellular  membrane.  CD74  actively  participates  in  B  cell
maturation  by  engaging  in  a  pathway  that  includes  the
activation  of  nuclear  factor  kappa-light-chain-enhancer.13

HLA-DPA1, functions as an HLA-DP peptide chain and an MHC
class II receptor. It actively participates in immune responses
and  the  presentation  of  antigenic  peptides.  GBP1,  a  crucial
GTPase  belonging  to  the  dynamin  superfamily,  assumes  a
significant role for the regulation of membrane dynamics, cell
cycle  progression,  and  the  organisation  of  the  cytoskeleton.
Additionally,  it  has  been  observed  that  GBP1  acts  as  a
protective  factor  against  IFNγ-induced  apoptosis  in  chronic
inflammation.14  OAS1  belongs  to  the  family  of  2'-5'-
oligoadenylate synthetases and is  a  gene that  is  induced by
interferons.  Studies  suggest  that  OAS1  has  the  ability  to
induce  apoptosis  and  enhance  IFNαβ  signalling.  Previous
research  investigating  the  connections  has  established  that
genetic variations within the HLA complex play a vital role as
risk  factors  for  idiopathic  inflammatory  myopathies.  HLA-B
encodes  one  of  the  primary  variants  of  HLA  Class  I  cell
surface  receptors  which  present  short  polypeptides  derived
from self or foreign sources to cytotoxic T cells for recognition
and binding. The HLA-B*08:01 allele exhibits a slight increase
in  association  with  PM.15  HLA-C,  on  the  other  hand,  is  a
polymorphic  membrane  protein  that  contributes  to  adaptive
immunity. It does so by binding peptides derived from within
cells and presenting them to CD8+ cytotoxic T cells. HLA-E is
a  significant  molecule  in  immune  surveillance,  belonging  to
the  low-polymorphism  nonclassical  MHC  Class  I.  It  is
responsible  for  presenting  peptides  to  T  and  NK  cells.  In
terms  of  molecular  impact,  a  total  of  seven  central  genes
have been identified to play a crucial role in the advancement
of  PM  and  its  related  complexities.  Consequently,  they  offer
new prospects for potential therapeutic targets in addressing
PM-related issues.
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In  this  investigation,  the  foremost  six  targeted  DEGs  in  the
miRNA-gene network were ZFP36L2, GPR137B, ARL4C, PRUNE2,
RBM47,  and  MARCKSL1.  According  to  Makita  et  al.,  ZFP36L2
diminishes the expression of iTregs and hampers their function.
Additionally,  suppressing  ZFP36L2  in  iTregs  might  offer  a
potential  therapeutic  approach  for  autoimmune  diseases.16

GPR137B,  on the other hand, is a lysosomal regulatory protein
resembling  a  GPCR  that  indirectly  governs  cell  proliferation.17

Furthermore,  RNA-binding  motif-protein-47  (RBM47)  enhances
the  production  of  IL-10  in  B  cells  while  simultaneously
preserving  the  stability  of  IL-10  messenger  RNA.  Lastly,
myristoylated alanine-rich C kinase substrate like-1 (MARCKSL1)
is a tethered protein within the cell membrane that assumes a
role in tasks such as cell-spreading, activation of integrins, and
exocytosis.  Further  research  regarding  the  relationship  of
ARL4C  and  PRUNE2  with  PM  is  clearly  needed.

The  TF-gene  network  identified  ARHGDIB,  UCP2,  ARL4C,  HLA-
DPA1, and UBE2L6 as the top five DEGs. UCP2, an anion carrier
localised  in  mitochondria,  exerts  an  influence  on  inflammatory
and metabolic processes.18  UBE2L6,  an enzyme involved in the
interferon  response  pathway,  assumes  a  crucial  role  in
mediating the immune response.19 The roles of ARL4C and HLA-
DPA1 in PM have previously been explored.

There  were  some limitations  to  this  research.  Regrettably,  the
sample  size  was  not  sufficiently  extensive,  and  as  a  conse-
quence  of  insufficient  experimentation,  this  study’s  findings
were  unable  to  be  corroborated.  To  surmount  this  hurdle,  the
collection  of  samples  would  broaden  for  subsequent  investi-
gations  and  conduct  verification  experiments.

CONCLUSION

Analysing three microarray datasets,  this  research picked out
seven  hub  genes  of  polymyositis,  namely  CD74,  HLA-DPA1,
HLA-B, GBP1, OAS1, HLA-C, and HLA-E. In addition, the top six
DEGs  targeted  by  miRNAs  were  ZFP36L2,  GPR137B,  ARL4C,
PRUNE2,  RBM47,  and  MARCKSL1.  The  hsa-miR-27a-3p  was
indicated as the miRNA responsible for regulating the highest
quantity of DEGs. Five primary DEGs that underwent targeting
by TFs were ARHGDIB, UCP2, ARL4C, UBE2L6,  and HLA-DPA1.
The  potential  medicines  with  therapeutic  purposes  were
predicted.  Additional  investigation  is  necessary  to  validate
these  outcomes  and  unravel  additional  mechanisms.  The
present and future findings may contribute to the discovery of
novel therapeutic targets for PM.
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