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Advanced Radiomics for Predicting Extracapsular Invasion
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ABSTRACT
Objective: To evaluate the efficacy of radiomics features extracted from computed tomography (CT) images in predicting extracapsular
invasion (ECI) of metastatic axillary lymph nodes in breast cancer patients.
Study Design: Observational study.
Place and Duration of the Study: Department of Radiology, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research
Hospital, Yenimahalle, Ankara, Turkiye, from January 2019 to 2024.
Methodology: Female patients diagnosed with breast cancer and axillary lymph node involvement were retrospectively reviewed. High-
dimensional radiomics features were extracted from CT images, including morphology, histogram, gray level co-occurrence matrix
(GLCM),  gray  level  run  length  matrix  (GLRLM),  neighbouring  gray  tone  difference  matrix  (NGTDM),  and  gray  level  size  zone  matrix
(GLSZM) features. Advanced statistical methods, including the Mann-Whitney U test, LASSO, and ANOVA, were employed to identify
significant predictors of ECI. Logistic regression models were developed, and their performance was evaluated using ROC curve analysis.
Results: The study identified 39 radiomics features significantly associated with ECI (p <0.05). Integrating multiple radiomics features,
the combined model  demonstrated adequate diagnostic  performance.  The model  explained 57.8% of  the variance in  ECI  status
according to the Nagelkerke R-square statistic. Individual feature models' predictive power was lower than the combined model.
Conclusion: Radiomics features derived from CT images provide a powerful non-invasive tool for predicting ECI in metastatic axillary
lymph nodes due to breast cancer. The combined model's superior performance underscores the importance of a multifaceted approach
in medical imaging analysis. These findings highlight the potential for radiomics to enhance prognostic assessments and guide person-
alised treatment strategies in breast cancer management.
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INTRODUCTION

Breast cancer remains a significant concern for women's health,
with profound implications for morbidity and mortality. One of
the critical factors in the staging and prognosis of breast cancer is
the involvement of axillary lymph nodes.1-4 Distant metastases
and  recurrences  are  more  common  in  patients  with  axillary
lymph  involvement,  that  influences  treatment  decisions  and
patient  outcomes.  Among  the  various  pathological  features,
extracapsular  invasion (ECI)  of  the metastatic  axillary  lymph
node is a critical point for aggressive diseases and a  poorer
prognosis.5-8
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Advanced imaging techniques and computational analysis have
opened new avenues for  enhancing diagnostic  accuracy and
prediction  of  prognosis  in  cancer  patients.9,10  Radiomics,  a
burgeoning field within medical imaging, involves achieving and
analysing quantitative information from medical images. These
attributes, which contain various aspects of tumour shape, inten-
sity, and texture, can supply valuable insights into the tumour
microenvironment and behaviour that need to be discernible
through conventional imaging interpretations.11-16

CT imaging is a widely used imaging technique in clinical practice
for the evaluation of cancer patients, offering high-resolution
images that facilitate detailed analysis of anatomical structures.
This study focused on predicting the ECI of metastatic axillary
lymph nodes due to breast cancer using radiomics features. By
using radiomics, this study aimed to identify specific imaging
biomarkers that correlate with ECI, thereby improving predictive
accuracy and aiding in personalised treatment planning.

METHODOLOGY

This was an observational retrospective study and included 56
female patients with metastatic axillary lymph nodes positive
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for breast cancer. All patients underwent computed tomog-
raphy (CT) imaging as a part of their clinical evaluation from
January  2019  to  2024.  The  inclusion  standards  were:
Confirmed diagnosis of breast cancer with axillary lymph node
involvement, availability of high-quality CT images, and histo-
pathological confirmation of ECI status. The exclusion criteria
were substandard quality or incomplete CT images, previous
treatment history (surgery, chemotherapy, or radiotherapy)
before the CT scan, and incomplete clinical or pathological
data.

All patients underwent enhanced chest CT scan using a 16-slice
multidetector  CT  scanner  (GE  Revolution,  General  Electric,
Milwaukee, Wisconsin, USA). An experienced radiologist with a
15-year experience, manually delineated regions of interest
(ROIs) encompassing the metastatic lymph nodes and a 3mm
diameter around using LIFEx software. The segmentation of
the lymph node and perinodal area are presented in Figure 1. A
total of 89 radiomics features drew out from the ROIs.

SPSS (Statistical Package for the Social Sciences) version 26
(IBM Corp., Armonk, NY, USA) and R software (version 4.3.1)
were used for statistical analysis. The distribution of contin-
uous variables  was evaluated using statistical,  descriptive,
and graphical techniques. The normality of the continuous vari-
ables was assessed with the Shapiro-Wilk’s test. Categorical
variables were computed using percentages and frequencies,
whilst continuous variables were presented using means and
standard deviations. The ANOVA and Mann-Whitney U tests
were  used  to  determine  which  radiomics  features  were
strongly linked to the occurrence of ECI.

The feature selection process employed LASSO method, which
penalised variables of lesser importance and effectively dealt
with problems related to multicollinearity and overfitting. The
logistic regression models incorporated parameters that had
statistical significance in distinguishing between ECI-positive
and ECI-negative nodes.

The models' predictive ability was determined by ROC curve
analysis, where the AUC values were computed. The calibra-
tion and goodness-of-fit of the model were estimated using the
Hosmer-Lemeshow  test  and  the  Nagelkerke  R-square
statistic. Statistical significance was approved as a p-value
less than 0.05, and was calculated  on both sides of the distri-
bution.

RESULTS

A total of 56 female patients diagnosed with breast cancer and
metastatic axillary lymph node involvement were included in
the study. The mean age was 59 ± 13 years. The distribution of
tumour types among the patients was as follows: 46 (82.1%)
had invasive ductal carcinoma, 5 (8.9%) had invasive lobular
carcinoma, 2 (3.6%) had mixed carcinoma, and 1 (1.8%) each
had mucinous carcinoma, metaplastic carcinoma, and secre-
tory breast carcinoma. ECI was observed in 42 (75%) of the
lymph nodes.

Measurements were taken from the axillary lymph nodes of all
patients, along with a surrounding 3mm perinodal area. A total
of  89  radiomics  features  were  extracted  and  analysed,
including 15 morphology, 26 histograms, 18 GLCM, 11 GLRLM,
5  NGTDM,  and  14  GLSZM features.  Of  these,  39  radiomics
features showed a statistically significant association with the
presence  of  ECI  (p  <0.05).  These  features  included  four
morphological,  12  first-order,  four  GLCM,  nine  GLRLM,  two
NGTDM, and eight GLSZM features (Table I).

After  feature  selection  using  LASSO,  the  most  predictive
features for ECI were identified as follows: Three morphological
features  (sphere  diameter,  surface  area,  surface-to-volume
ratio),  four  first-order  histogram features (mean,  maximum
grey level, area under the curve, and root mean square), three
GLCM features (joint average, sum average, and autocorrela-
tion), four GLRLM features (low-high grey level run emphasis,
grey level non-uniformity, short-run low grey level emphasis),
one  NGTDM  feature  (coarseness),  and  one  GLSZM  feature
(zone size entropy).
 

Figure 1: Density of ductal carcinoma (blue arrow) and axillary lymph
node  segmentation.

Figure  2:  ROC  curves  used  to  detect  the  presence  of  ECI. 



Radiomics for  predicting extracapsular  invasion of  lymph node

Journal  of  the College of  Physicians and Surgeons Pakistan 2025,  Vol.  35(04):415-419 417

Table I: Radiomics standardised data used in the study.

 
Characteristics ECI. No ECI. Yes p-value Characteristics ECI. No ECI. Yes p-value

Mean ± SD Mean ± SD Mean ± SD Mean ± SD
Morphology - - - GLCM - - -
Volume -0.35 ± 0.11 0.12 ± 1.13 0.130a Joint maximum 0.02 ± 0.94 -0.01 ± 1.03 0.925a

Approximate volume -0.35 ± 0.11 0.12 ± 1.13 0.129a Joint average*‡ -0.51 ± 1.05 0.17 ± 0.93 0.025a

Voxels counting -0.34 ± 0.09 0.11 ± 1.13 0.146a Joint variance -0.30 ± 0.81 0.10 ± 1.05 0.204a

Surface area*‡ -0.49 (-0.67; -0.27)# -0.12 (-0.44; 0.29)# 0.003b Joint entropy log 2 -0.24 ± 1.02 0.08 ± 0.99 0.294a

Surface to volume
ratio*‡

0.69 ± 1.04 -0.23 ± 0.88 0.002a Joint entropy log 10 -0.24 ± 1.02 0.08 ± 0.99 0.294a

Compacity -0.18 ± 0.98 0.06 ± 1.01 0.430a Difference average -0.03 ± 0.88 0.01 ± 1.05 0.909a

Compactness 1 0.22 ± 1.03 -0.07 ± 0.99 0.355a Difference variance -0.10 ± 0.71 0.03 ± 1.08 0.683a

Compactness 2 0.23 ± 1.06 -0.08 ± 0.98 0.322a Difference entropy -0.24 ± 1.02 0.08 ± 0.99 0.294a

Spherical disproportion -0.19 ± 0.99 0.06 ± 1.01 0.417a Sum average*‡ -0.51 ± 1.05 0.17 ± 0.93 0.025a

Sphericity 0.21 ± 1.02 -0.07 ± 1.00 0.366a Angular second moment 0.07 ± 1.02 -0.02 ± 1.00 0.760a

Asphericity -0.19 ± 0.99 0.06 ± 1.01 0.417a Contrast -0.07 ± 0.77 0.02 ± 1.07 0.779a

Centre of mass shift 0.09 ± 0.85 -0.03 ± 1.05 0.704a Dissimilarity -0.03 ± 0.88 0.01 ± 1.05 0.909a

Maximum 3D
diameter*

-0.57 ± 0.52 0.19 ± 1.05 0.013a Inverse difference -0.05 ± 0.87 0.02 ± 1.05 0.833a

Sphere diameter*‡ -0.59 ± 0.45 0.20 ± 1.06 0.010a Inverse difference moment -0.07 ± 0.85 0.02 ± 1.05 0.779a

Integrated intensity -0.22 ± 0.02 0.07 ± 1.15 0.343a Correlation -0.33 ± 1.11 0.11 ± 0.95 0.152a

Histogram - - - Autocorrelation*‡ -0.51 ± 1.05 0.17 ± 0.93 0.026a

Mean*‡ -0.48 ± 1.10 0.16 ± 0.92 0.036a Cluster shade* 0.46 ± 0.78 -0.15 ± 1.03 0.046a

variance -0.38 ± 0.77 0.13 ± 1.04 0.104a Cluster prominence -0.41 ± 0.61 0.14 ± 1.07 0.079a

Skewness* 0.73 ± 0.89 -0.09 ± 0.95 0.007a GLRLM - - -
Kurtosis 0.06 ± 1.33 -0.02 ± 0.88 0.804a Short runs emphasis* 0.53 (0.24; 0.67)# 0.15 (-0.56; 0.56)# 0.045b

Median* -0.45 ± 1.05 0.21 ± 0.94 0.030a Long runs emphasis* -0.51 (-0.62; -0.11)# -0.15 (-0.46; 0.65)# 0.047b

Minimum grey level 0.21 ± 1.02 -0.07 ± 1.00 0.367a Low grey level run emphasis*‡ 0.47 ± 1.11 -0.16 ± 0.92 0.043a

10th Percentile* -0.54 (-0.65; -0.13) # 0.28 (-0.54; 0.69)# 0.021b High grey level run emphasis*‡ -0.48 ± 1.11 0.16 ± 0.92 0.036a

25th Percentile* -0.52 (-0.85; -0.12) # -0.04 (-0.52; 1.09)# 0.038b Short run low grey level emphasis*‡ 0.47 ± 1.05 -0.16 ± 0.94 0.039a

50th Percentile* -0.57 (-1.27; 0.47) # 0.12 (-0.43; 1.03)# 0.037b Short run high grey level emphasis* -0.59 (-1.22; 0.05)# 0.22 (-0.50; 0.58)# 0.024b

75th Percentile* -0.52 ± 1.00 0.17 ± 0.95 0.023a Long run low grey level emphasis -0.07 ± 0.57 0.02 ± 1.11 0.759a

90th Percentile* -0.53 ± 0.91 0.18 ± 0.97 0.019a Long run high grey level emphasis* -0.70 (-0.90; -0.09)# -0.23 (-0.46; 0.68)# 0.039b

Standard deviation -0.39 ± 0.90 0.13±1.01 0.092a Grey level non-uniformity*‡ -0.34 (-0.36; -0.26)# -0.26 (-0.33; -0.08)# 0.021b

Maximum grey level*‡ -0.62 ± 0.62 0.21±1.02 0.006a Run length non-uniformity -0.33 ± 0.10 0.11 ± 1.13 0.152a

Mode -0.24 ± 0.99 0.08±1.00 0.298a Run percentage* 0.56 (0.27; 0.67) # 0.19 (-0.53; 0.55)# 0.047b

Interquartile range -0.26 ± 1.02 0.09 ± 0.99 0.256a NGTDM - - -
Range* -0.56 ± 0.65 0.19 ± 1.03 0.015a Coarseness*‡ 0.57 ± 1.16 -0.19 ± 0.88 0.013a

Mean absolute
deviation

-0.35 ± 0.95 0.12 ± 1.00 0.127a Contrast* 0.41 (0.00; 0.91)# -0.07 (-0.82; 0.39)# 0.018b

Robust mean absolute
deviation

-0.30 ± 1.00 0.10 ± 0.99 0.191a Busyness -0.33 ± 0.15 0.11 ± 1.13 0.151a

Median absolute
deviation

-0.34 ± 0.96 0.11 ± 1.00 0.145a Complexity -0.32 ± 0.43 0.11 ± 1.11 0.172a

Coefficient of variation -0.32 ± 0.96 0.11 ± 1.00 0.171a Strength 0.26 ± 0.65 -0.09 ± 1.09 0.262a

Quartile coefficient of
dispersion

-0.21 ± 1.05 0.07 ± 0.99 0.370a GLSZM - - -

Entropy log 10 -0.41 ± 1.04 0.14 ± 0.96 0.080a Small zone emphasis -0.12 ± 0.84 0.04 ± 1.06 0.621a

Entropy log 2 -0.41 ± 1.04 0.14 ± 0.96 0.080a Large zone emphasis* -0.30 (-0.30; -0.28)# -0.29 (-0.30; -0.17)# 0.039b

Area under curve*‡ -0.48 ± 1.10 0.16 ± 0.92 0.036a Low gray level zone emphasis* 0.57 (0.00; 1.20)# -0.12 (-0.81; 0.40)# 0.025b

Uniformity 0.29 ± 1.17 -0.10 ± 0.93 0.211a High gray level zone emphasis* -0.57 (-1.12; 0.02)# 0.20 (-0.51; 0.67)# 0.024b

Root mean square*‡ 0.70 ± 1.05 -0.23 ± 0.88 0.002a Small zone low grey level emphasis 0.08 ± 0.97 -0.03 ± 1.02 0.721a

- - - - Small zone high grey level emphasis -0.29 ± 0.85 0.10 ± 1.03 0.207a

- - - - Large zone low grey level emphasis* -0.30 (-0.30; -0.28)# -0.28 (-0.29; -0.15)# 0.031b

- - - - Large zone high grey level emphasis* -0.31 (-0.31; -0.29)# -0.29 (-0.30; -0.14)# 0.021b

- - - - Grey level non-uniformity -0.34 ± 0.15 0.11 ± 1.13 0.149a

- - - - Zone size non-uniformity -0.37 ± 0.14 0.12 ± 1.13 0.115a

- - - - Zone percentage* 0.50 (0.35; 0.70)# -0.01 (-0.81; 0.54)# 0.018b

- - - - Grey level variance -0.45 ± 0.60 0.15 ± 1.07 0.050a

- - - - Zone size variance* -0.30 (-0.30; -0.28)# -0.28 (-0.30; -0.15)# 0.015b

- - - - Zone*‡ -0.66 ± 0.87 0.22 ± 0.95 0.003a

* Parameters with statistically significant differences (p <0.05, <0.01, and p <0.001) depending on the presence of ECI in the comparisons made before the LASSO
analysis. These parameters, which make a difference in the presence of ECI, were included in the LASSO analysis‡ Data selected for modelling with LASSO analysis;
a, One way ANOVA analysis; b, Mann-Whitney U test; #median (interquantile range).

Table II: Performances of radiomics models used to detect the presence of ECI.

Variables AUC (95% CI) Accuracy Sensitivity Specificity Precision R2
N

Morphology 0.78 (0.65-0.90) 0.750 0.929 0.214 0.780 0.288
Histogram 0.82 (0.70-0.95) 0.768 0.929 0.286 0.796 0.282
GLCM 0.77 (0.61-0.92) 0.821 0.952 0.429 0.833 0.256
GLRLM 0.86 (0.76-0.96) 0.768 0.881 0.429 0.822 0.343
NGTDM 0.76 (0.63-0.90) 0.750 0.952 0.143 0.769 0.157
GLSZM 0.76 (0.63-0.89) 0.768 0.952 0.214 0.784 0.225
All 0.92 (0.85-0.99) 0.839 0.881 0.714 0.902 0.578
AUC: Area under the curve. CI: Confidence interval. R2

N: Nagelkerke R-square.
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Logistic  regression  models  developed  using  the  selected
radiomics  features  were  evaluated  for  their  diagnostic
performance. ROC curve analysis showed that the model with
all combined features had the highest AUC value of 0.92 (Figure
2).  This  model  also  demonstrated  an  accuracy  of  0.839,  a
specificity of  0.714, and a sensitivity of  0.881. The Nagelkerke
R-square value indicated that the combined model explained
57.8% of the variance in ECI status (Table II).

When evaluating individual models, the GLRLM features model
achieved  the  highest  AUC of  0.86,  while  the  GLCM feature
model  showed  the  highest  sensitivity  (0.952),  specificity
(0.429),  accuracy (0.821),  and precision (0.833).  The GLRLM
feature  model  best  fits  the  dependent  variable,  with  a
Nagelkerke R-square value of 0.343. Despite these individual
performances,  no  statistically  significant  difference  in  AUC
values  was  observed  among  the  independent  models  (p
>0.05).  The  combined  model  outperformed  all  individual
models  in  terms  of  both  AUC  and  overall  diagnostic
performance.

DISCUSSION

The findings of this study highlight the potential of radiomics
in predicting ECI in metastatic axillary lymph nodes in breast
cancer. By leveraging advanced computational techniques
to  analyse  CT  images,  the  authors  identified  a  set  of
radiomics  features  significantly  correlated  with  ECI.  The
combined  model,  which  integrates  multiple  radiomics
features,  demonstrated  superior  diagnostic  performance
compared  to  individual  feature  models,  emphasising  the
importance of a multifaceted approach in medical imaging
analysis.

This  study  contributes  to  the  growing  body  of  literature
supporting radiomics in cancer prognosis and diagnosis. The
deep learning radiomics of ultrasonography (DLRU) model
has shown strong performance in identifying metastatic risk
in sentinel and non-sentinel lymph nodes in breast cancer.17

Hwang et al. conducted a study to determine the predictive
value  of  texture  analysis  (TA)  features  related  to  the
heterogeneity of axillary lymph nodes using 18F-FDG PET/CT
in  patients  with  locally  advanced  breast  cancer.  They
discovered  that  skewness,  a  measure  of  asymmetry,
independently predicts disease progression.18

The specific  application of  radiomics  to  predict  ECI  in  breast
cancer has also been explored in recent studies. For example,
Li et al. found that certain texture features extracted from
ultrasound  images  were  significantly  associated  with  ECI  in
breast  cancer  patients.  The  preset  study  extends  these
findings by utilising CT imaging, which provides a different set
of radiomics features and offers a more comprehensive view
of the tumour micro-environment.19

The  ability  to  predict  ECI  using  radiomics  features  has
significant  clinical  implications.  ECI  is  a  known  indicator  of

aggressive  disease  and  poorer  prognosis.  Accurate
prediction of ECI can aid in treatment planning, allowing for
more  tailored  and  effective  therapeutic  strategies.  For
example, patients identified as having a high risk of ECI may
benefit  from  more  aggressive  surgical  approaches  or
adjuvant  therapies.20

Despite  the  promising  results,  this  study  has  some
limitations.  First,  the  retrospective  design  may  introduce
selection bias. Second, the relatively small sample size may
limit the generalisability of the findings. Larger, multi-centre
studies are needed to validate the preset study’s results and
ensure  their  applicability  across  diverse  clinical  settings.
Third, the manual delineation of ROIs is subjected to inter-
observer  variability,  which  may  affect  the  reproducibility  of
radiomics  features.  Future  studies  should  consider
automated or semi-automated segmentation techniques to
improve consistency.  Additionally,  while the authors used
advanced  statistical  methods  such  as  LASSO for  feature
selection,  the  risk  of  overfitting  remains,  particularly  with
high-dimensional  data.  Robust  validation  techniques,
including  external  validation  cohorts,  are  essential  to
confirm the  reliability  of  the  predictive  models.  As  this  is  a
single-centre study with a small sample size, future research
should focus on increasing the sample size and incorporating
multi-centre  cohorts  to  enhance  the  robustness  and
generalisability of the findings.

CONCLUSION

This study demonstrates that radiomic features derived from
CT  images  can  effectively  predict  ECI  in  breast  cancer
patients  with  axillary  lymph  node  involvement.
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