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ABSTRACT
Objective: To determine the potential shared biological mechanism between obesity and clear cell renal carcinoma (ccRCC).
Study Design: Observational study.
Place and Duration of the Study: Department of Urology, Lishui People’s Hospital, Lishui City, China, from December 2022 to March
2023.
Methodology: The test and validation cohorts were selected from the GEO database. WGCNA and PPI networks were applied to identify
shared hub genes. GO/KEGG, GSEA, and ROC curve analyses were applied to explore the potential underlying mechanisms and diagnostic
power. Logistic regression was used to select genes to construct the signature. The risk score and various immune-related analyses were
performed to assess the clinical and immune performance of the signature. The CellMiner platform was used to screen potential FDA-ap-
proved drugs.
Results: PTPRC, TYROBP, ITGB2, CD86, and ITGAM were defined as shared hub genes with good diagnostic power for obesity and ccRCC.
Eight immune cells exhibited a positive correlation with the hub genes, while two immune cells showed negative associations. MDSCs and
Tregs had the strongest positive associations with the hub genes. The Treg-related pathway exhibited predominant enrichment. The
TYROBP, ITGB2, and CD86 genes were selected to construct an immune signature that has good clinical and immune performance. Six
FDA-approved drugs were screened.
Conclusion:  Five  Treg-related  genes  were  identified  as  shared  hub  genes  in  obese  patients  and  ccRCC  patients.  A  signature  was
constructed  to  describe  the  immune  features  of  ccRCC.
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INTRODUCTION
Renal cancer (RCC) is a prevalent urological malignancy that
caused approximately 430,000 new cases and 180,000 deaths
globally  in  2020.1  Currently,  RCC  accounts  for  2%  of  global
cancer diagnoses and deaths, and the incidence has more than
doubled  in  the  past  half-century.2  Clear  cell  renal  carcinoma
(ccRCC) is the main subtype of RCC and a main cause of tumour-
associated death. In addition to race and specific genetic factors,
such  as  von  Hippel-Lindau  disease,  potential  risk  factors,
including obesity, smoking, chronic kidney disease, and hyper-
tension,  have  been  identified.3-5  These  risk  factors  are  often
modifiable. Therefore, gaining a deeper understanding of these
modifiable  risk  factors  and  their  potential  molecular  mech-
anisms may provide a foundation for more precise preventive
strategies and improvements in early diagnosis and treatment.
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Among the modifiable risk factors mentioned above, obesity is
an independent risk factor and is concurrently associated with
lipid accumulation in the proximal tubules, which serve as the
origin  site  for  ccRCC.3,6  However,  the  relationship  between
obesity and RCC is intricate, and paradoxical aspects exist. The
risk of developing RCC is 1.82 times greater in individuals with
obesity than in those with normal body weight. On the other
hand, the overall survival (OS) of obese RCC patients is greater
than that of nonobese individuals.1 Recently, research has been
conducted  to  elucidate  the  association  between  circulating
obesity-driven  biomarkers  and  the  risk  of  ccRCC,  providing
evidence for the relevance of insulin-resistance and chronic
inflammation  to  ccRCC  risk.7  Therefore,  exploring  common
biomarkers may offer novel directions for understanding the
intricate relationship between obesity and RCC. In this study,
the potential shared pathogenic mechanisms between RCC and
obesity were investigated, and molecular signatures predicting
the prognosis of RCC were constructed based on these common
pathogenic markers. The objective of this study was to deter-
mine  the  potential  shared  biological  mechanism  between
obesity and ccRCC.
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METHODOLOGY
The  ccRCC and  obesity  datasets  were  searched  in  the  Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.-
gov/geo/) with the criteria met; datasets should contain patient
and  control  data,  each  group  should  include  more  than  20
samples, obesity/nonobesity samples should be derived from
adipose tissues, ccRCC and normal samples should be derived
from tumour and adjacent normal tissues, and samples from the
validation cohort should be paired.

Data normalisation of the GEO datasets was performed using
the  “normalizeBetweenArrays”  function  of  the  limma  R
package. The WGCNA package in R was applied to construct
coexpression networks, generate module eigengenes (MEs),
and measure the association between MEs and the occurrence
of disease with soft powers β set at 2 in obese patients and 11 in
ccRCC  patients.  The  other  parameters  were  set  as  follows:
minModuleSize  =  50,  mergeCutHeight  =  0.25,  TOMType  =
unsigned, and deepSplit = 2.

The gene coexpression module with the strongest positive corre-
lation  coefficient  was  extracted  from  the  WGCNA  results  for
obese patients and ccRCC patients. The common genes were
identified as genes common to both obesity and ccRCC. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were further performed to deter-
mine the potential biological functions of the genes using the clus-
terProfiler package in R. The cut-off value was set at p<0.05.

STRING  (http://string-db.org)  and  Cytoscape  (http://cytos-
cape.org/)  were  used  to  create  the  PPI  networks.  To  further
screen the core shared genes, the CytoHubaa and MCODE plug-
ins were used. MCODE was used to screen the largest cluster with
default parameters, and four algorithms in cytoHubba (Degree,
EPC MCC, and MNC) were used to identify the top 10 genes. The
common genes were defined as shared hub genes.

The ggpubr R package was used to determine the differential
expression of  common hub genes in the validation cohort.  A
significance threshold of p<0.5 was applied.

To evaluate the predictive power of the shared hub genes in
ccRCC and obesity, ROC curves were generated, and AUC values
were calculated by the pROC package in R in both the test and vali-
dation cohorts.

ssGSEA was used to measure the infiltration degrees of 28 types
of  immune cells  in  ccRCC and  obesity  patients  by  the  GSVA
package in R. The association between shared hub genes and
immune cells was assessed using the ggcorrplot package in R.
The reference gene sets of 28 immune cells were downloaded
from  TISIDB  (http://cis.hku.hk/TISIDB/data/download/CellRe-
ports.txt). Cluster analyses of the ccRCC and obesity datasets
were performed according to the infiltration status of immune
cells. The correlation between shared hub genes and immune
cells was calculated further, and the p-value was set at p<0.01.

GSEA was also conducted with GSEA software to compare the
high-expression  and  low-expression  groups  according  to  the
median expression of the hub shared genes. The significant cut-

off values were set as follows: nominal p-values of <0.05, |normal-
ized enrichment scores (NES) | >1 and false-positive rate (FDR) q
values of <0.25.

A  signature  was  constructed  to  guild  clinical  practice  and
describe immune characteristics. A multivariate logistic method
was applied to select factors from the hub genes and obtain odds
ratio OR values. The ORs were considered as the coefficients of
the factors in the signature. Thus, the signature score was calcu-
lated as follows: ∑(gene expression × coefficient).

According to major clinical traits, the samples were divided into
subgroups as follows: normal vs. ccRCC, I-II stage vs. III-IV stage,
T1-T2 vs. T3-T4, M0 vs. M1, N0 vs. N1-N3, and G1-G4. The signa-
ture score of each subgroup was calculated. On the other hand,
the  samples  were  divided  into  high-risk  groups  and  low-risk
groups according to the median score. The immune infiltration,
immune score,  immune checkpoints  expression,  and HLA-re-
lated gene expression were analysed between the high- and low-
risk groups.

The CellMiner database provides a description of 60 types of
cancer cells and their response to FDA-approved drugs. It is a plat-
form for  screening  potential  drugs.  The  “NCI-60”  profile  was
downloaded from the cellMiner platform (http://discover.nci.nih.-
gov/cellminer/loadDownload.do). Pearson analysis was used to
calculate the correlation of the hub genes with the drugs. The two
drugs  with  the  minimum  p-value  were  considered  potential
drugs.

RESULTS

According  to  the  inclusion  criteria,  four  GEO  datasets  were
included. The GSE25401 (26 obese and 30 nonobese, GPL6244,
Microarray)  and  GSE40435  (202  ccRCC  and  202  controls,
GPL10558,  Microarray)  datasets  were  screened  as  the
discovery cohorts. The GSE92405 (24 obese and 24 nonobese,
GPL19109,  Microarray)  and  GSE53757  (72  ccRCC  and  72
controls,  GPL570, Microarray) datasets were considered the
validation  cohorts.  Two  paired  twins  (GSM2890455,  GSM
2890456,  GSM2890457,  and  GSM2890458)  were  excluded
from GSE92405 because they had the same BMI category.

The  GSE25401  and  GSE40435  datasets  were  utilised  for
WGCNA. The cluster dendrograms of GSE40435 and GSE25401
are displayed in Figure 1, A and B. Seven modules were iden-
tified  in  the  GSE40435  dataset  (Figure  1C),  and  all  seven
modules  were  significantly  different  (green  module:  r=0.4,
p=5e-09; red module: r=0.55, p=2e-17; blue module: r=0.5,
p=3e-58; brown module: r=0.77, p=4e-41; turquoise module:
r=-0.95,  p=1e-99;  yellow  module:  r=-0.17,  p=0.02;  grey
module: r=-0.21, p=0.002). Nine modules were identified in the
GSE25401 dataset (Figure 1D). The turquoise module (r=0.72,
p=4e-10), black module (r=-0.36, p=0.006), and green module
(r=-0.29,  p=0.03)  were  associated  with  obesity.  The  two
modules with the strongest positive correlation (blue module in
GSE40435  and  turquoise  module  in  GSE25401).  These  two
modules had 187 shared genes, which were selected for further
analysis.
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Figure 1: WGCNA, GO and KEGG enrichment analyses and the expression-verification of the hub genes. The cluster dendrogram of GSE40435 (A) and
GSE25401 (B) The module-trait relationships of GSE40435 (C) and GSE25401 (D) The KEGG (E) and GO (F). Enrichment analysis of 187 overlapped
genes  of  WGCNA.  Six  hub  genes  were  more  highly  expressed  in  ccRCC  tissues  than  normal  tissues  (G).  Five  hub  genes  were  significantly  more
highly expressed in obese patients than in nonobese patients (H).

To interpret the potential biofunctions of the shared genes,
GO and KEGG analyses were performed. The KEGG pathway
enrichment data (Figure 1E) and the top 10 BP, CC, and MF
terms (Figure 1F) are shown in Figure 1. Regarding molec-
ular function and biological process terms, the shared genes
were enriched in several terms involved in immune mech-
anisms (Figure 1F) as T-cell activation; leukocyte-mediated
immunity,  activation  of  immune  response  and  immune
receptor activity, and MHC class II protein complex binding.
Furthermore, KEGG analysis showed that immunity may be
involved in the shared mechanisms of tumours and obesity.
The enriched pathways were as follows: intestinal immune
network for IgA production, antigen processing and presenta-
tion, neutrophil extracellular trap formation, and Th17 cell
differentiation (Figure 1E).

STRING  and  Cytoscape  were  used  to  further  select  hub
genes. Four algorithms (Degree, EPC, MCC, and MNC) of cyto-
Hubba were used to screen the top 10 genes. MCODE iden-
tified  the  largest  cluster,  which  included  38  genes  with  an
MCODE score = 31.676. There were six overlapping genes
PTPRC,  TYROBP,  SPI1,  ITGB2,  CD86,  and  ITGAM  in  the  five
clusters.

The GSE92405 and GSE53757 datasets were utilised to vali-
date the expression of  shared hub genes.  The box plot

showed that PTPRC, TYROBP, ITGB2, CD86, and ITGAM were
more highly  expressed in  ccRCC (Figure 1G)  and obese
patients (Figure 1H). SPI1  was more highly expressed in
ccRCC  patients,  with  a  p-value=4.7e-11  (Figure  1G).
However,  SPI1  was  not  differentially  expressed  between
obese  and  nonobese  patients  (Figure  1H).

The ROC curves illustrated the ability of the shared hub
genes  to  predict  ccRCC  and  obesity.  The  five  shared  hub
genes had excellent  diagnostic  functions in  ccRCC,  with
AUC values ranging from 0.92-0.97 (Figure 2, A and B), as
well  as  good  diagnostic  functions  in  obesity,  with  AUC
values ranging from 0.70-0.86 (Figure 2, C and D).

According to the GO and KEGG analyses, immunity may be
a shared mechanism between ccRCC and obesity. There-
fore,  assessment  of  immune  infiltration  was  assessed
(Figure 2, E-H). Five hub genes were positively correlated
with activated CD4 T cells, gamma delta T cells, regulatory
T cells, myeloid-derived suppressor cells, and macrophages
in both the ccRCC and obese groups (Figure 2, E and G). On
the  other  hand,  they  were  negatively  correlated  with  T
helper 17 cells, CD56 bright natural killer cells, and plasma-
cytoid dendritic cells in both the ccRCC and obese groups
(Figure 2, E and G).
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Figure 2: ROC and immune infiltration analysis. ITGB2, CD86, PRPTC, TYROBP, and ITGAM have extremely powerful diagnostic functions for ccRCC,
with AUCs ranging from 0.92-0.97 (A-B), and highly powerful diagnostic functions for obesity with AUCs ranging from 0.70-0.86 (C-D). The immune
cells marked with a red/blue block are positively/negatively correlated with the hub genes shared by obese patients (E). ssGSEA revealed that the
immune  statuses  of  “obese  vs.  nonobese”  individuals  were  generally  different  (F).  The  same  results  were  found  in  the  ccRCC  cohort  (G,  H).  A
“regulatory T-cell” and “myeloid-derived suppressor cell” marked with a red rectangle indicate that they were strongly positively associated with
the hub genes in ccRCC patients and obese individuals.

Among the hub genes,  myeloid-derived suppressor cells,
and regulatory T cell, had the strongest positive associa-
tions. In general, the analysis of immune infiltration showed
that  ccRCC  patients  vs.  normal  individuals  and  obese
patients vs. Nonobese patients had different immune statu-
ses (Figure 2, F and H).

The GSE40435 and GSE25401 datasets were subjected to
GSEA. The results revealed high expression of ITGB2, CD86,
PRPTC, TRYOBP, and ITGAM, which were enriched mainly in
the GOBP REGULATION OF REGULATORY T CELL DIFFERENTI-
ATION and GOBP REGULATORY T CELL DIFFERENTIATION
(Table I). This result was consistent with the immune infiltra-
tion data, which demonstrated that Treg cells were strongly
correlated with the five hub genes.

CD86,  TYROBP,  and  ITGB2  were  screened  using  multi-
variate logistic regression (Table II). Logistic regression was
performed to determine the ORs (CD86-0.5758, TYROBP-

1.0144, and ITGB2-0.9509) (Table II). Thus, the signature
score was calculated as CD86*0.57 +TYROBP*1.01+ITGB2*
0.95.

The risk scores of the clinical subgroups were calculated.
The violin plots showed that the ccRCC group had a higher
risk score than that the normal group (Figure 3A). The risk
scores  were  greater  in  the  advanced  subgroups  (T3-T4
group,  N1-N3 group,  M1 group,  III-IV  group,  and  G3-G4
group) than in the early-stage subgroup (Figure 3, B-D).
This result indicated that the signature was strongly corre-
lated  with  clinical  traits  and  had  a  potential  predictive
power.  The  infiltration  of  22  types  of  immune  cells
increased in the high-risk group (Figure 3E).  The stomal
score, immune score and ESTIMATE score of the high-risk
group were greater than those of the low-risk group (Figure
3F). Most immune checkpoint genes (Figure 3G) and HLA-re-
lated genes were highly expressed in the high-risk group
(Figure 3H).
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Two potential FDA-approved drugs were screened for CD86
(isotretinoin, R=0.75, p<0.001; megestrol acetate, R=0.7,
p<0.001), TYROBP (artemether, R=0.73, p<0.001; imexon,

R=0.63,  p<0.001),  and  ITGB2  (nelarabine,  R=0.72,
p<0.001;  zalcitabine,  R=0.7,  p<0.001).

Figure 3: The risk score of clinical subgroups and the immune performance of the signature. The violin plots show that the ccRCC group had a
high risk score (A). The advanced subgroup had higher risk scores (B-D). The relationship between the signature score and immune infiltration.
There was differential infiltration of 22 types of immune cells between the high-risk group and low-risk group (E). Violin plots showing that the
high-score group had higher stromal, immune and estimate scores (F).  The violin plots showed that the high-score group had greater
expression of immune checkpoint genes and HLA-related genes (G, H).
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Table I: High expression of ITGB2, CD86, PRPTC, TRYOBP, and ITGAM in the GSE40435 (ccRCC) and GSE25401 (obesity) cohorts were all
enriched in the GOBP REGULATION OF REGULATORY T CELL DIFFERENTIATION and GOBP REGULATORY T CELL DIFFERENTIATION.

GeneSet Disease-genes Enrichment
Score
(ES)

Normalised ES
(NES)

Nominal p-value FDR q-
value

GOBP positive regulation of
regulatory T-cell differentiation

ccRCC-CD86 0.86 1.71 0.00 0.01
ccRCC-ITGAM 0.85 1.51 0.00 0.06
ccRCC-ITGB2 0.86 1.52 0.00 0.12
ccRCC-PRPTC 0.86 1.84 0.00 0.00
ccRCC-TYROBP 0.86 1.62 0.00 0.04
obesity-CD86 0.75 1.66 0.00 0.02
obesity-ITGAM 0.77 1.95 0.00 0.00
obesity-ITGB2 0.77 1.63 0.00 0.05
obesity-PRPTC 0.77 1.96 0.00 0.01
obesity-TYROBP 0.71 1.52 0.00 0.06

GOBP regulatory T-cell
differentiation

ccRCC-CD86 0.82 1.73 0.00 0.01
ccRCC-ITGAM 0.82 1.58 0.00 0.05
ccRCC-ITGB2 0.81 1.52 0.00 0.12
ccRCC-PRPTC 0.82 1.95 0.00 0.00
ccRCC-TYROBP 0.81 1.67 0.00 0.03
obesity-CD86 0.69 1.64 0.00 0.02
obesity-ITGAM 0.71 1.97 0.00 0.00
obesity-ITGB2 0.73 1.66 0.00 0.04
obesity-PRPTC 0.71 1.97 0.00 0.00
obesity-TYROBP 0.69 1.50 0.00 0.07

Table  II:  Multivariate  logistic  regression  of  five  genes.  The  forest  plot  shows  that  CD86,  TYROBP,  and  ITGAM  were  independent  predictive
factors. The three genes above were subjected to multivariate logistic regression analysis to determine the odds ratios (ORs) (CD86-0.5758,
TYROBP-1.0144, and ITGB2-0.9509).

Multivariate logistics to screen genes Multivariate logistics to obtain OR value
Genes p-value OR p-value OR
CD86 4.09E-07 0.61 (0.50-0.73) 1.48E-12 0.57 (0.49-0.66)
PIPRC 0.2691 0.96 (0.90-1.02)   
TYROBP 0.00057 1.01 (1.00-1.01) 1.21E-05 1.01 (1.01-1.02)
ITGB2 0.00808 0.95 (0.92-0.98) 0.00078 0.95 (0.92-0.97)
ITGAM 0.44966 0.99 (0.96-1.02)   

DISCUSSION

Multiple previous epidemiologic surveys have indicated that
obesity is a risk factor for kidney cancer and can facilitate
tumour  progression  and  metastasis.6  Moreover,  recent
studies with big data have further confirmed these associa-
tions.7  Several  mechanisms  have  been  explained.  For
example, the accumulation of adipose cells induces chronic
hypoxia, increases tissue inflammation, and promotes insulin
resistance, which provides an optimal microenvironment for
tumour cells.8 In addition, adipose tissue secretes adipokines
and adiponectin, which stimulate carcinogenesis.10

In the present study, 187 common genes related to obesity
and ccRCC were screened through WGCNA. Moreover, six
genes were further selected by combining five types of algo-
rithms.  PTPRC,  TYROBP,  ITGB2,  CD86,  and  ITGAM,  which
were  significantly  upregulated  in  both  obese  patients  and
ccRCC  patients  in  the  validation  cohort,  were  defined  as
shared hub genes. In addition, ROC analysis revealed that
PTPRC,  TYROBP,  ITGB2,  CD86,  and ITGAM  had good diag-
nostic power for obesity and ccRCC with AUC values ranging
from 0.92-0.97 and 0.70-0.86, respectively.

GO and KEGG analyses revealed that multiple pathways
involving immunity, such as pathways related to T-cell acti-
vation,  were  significantly  enriched.  T-cell  activation  is  a
crucial component of the tumour immune mechanism and
is highly dependent on the functionality of dendritic cells
(DCs).9  In addition,  the transition between the quiescent
and  activated  states  of  T-cells  is  influenced  by  various
factors,  such as the innate immune system, intracellular
metabolic characteristics, and extracellular factors such as
nutrients and regulatory T-cells, all of which can directly or
indirectly  impact  this  process.10  Improving  the  unders-
tanding of T-cell activation pathways may provide opportu-
nities to enhance the efficacy of immune checkpoint inhibi-
tors  and  other  immunotherapies.  Correlation  analysis
revealed that eight types of immune cells had positive asso-
ciations and that two types of immune cells had negative
associations  with  five  shared  hub  genes  in  both  obese
patients and ccRCC patients. These results indicated that
immunological mechanisms may play an important role in
the occurrence and development  of  obesity  and ccRCC.
According  to  the  correlation  analysis,  myeloid-derived
suppressor  cells  (MDSCs),  and  regulatory  T-cells  (Tregs)
had the highest correlation coefficients with the hub genes.
MDSCs are a group of heterogeneous cells composed of
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bone marrow progenitor cells and immature myeloid cells
(IMCs). MDSCs are involved in multiple aspects of immune
regulation,  such  as  cancer,  inflammation,  trauma,  and
graft-versus-host disease.11 Tregs can suppress the function
of  effector  T-cells  and  maintain  immune  system  homeos-
tasis.12 In terms of immune function, MDSCs and Tregs were
all  classified  as  suppressive  immune  cells.13  When  the
tumour  microenvironment  (TME)  abnormally  recruits
MDSCs and Tregs,  they establish an immunosuppressive
TME together. On the other hand, Tregs can also recruit
MDSCs to the TME to promote tumour escape.14 In addition,
the GSEA results indicated that the hub genes were highly
enriched  in  Treg-related  pathways  (POSITIVE_REGULA-
TION_OF_REGULATORY_T_CELL_DIFFERENTIATION  and
REGULATORY_T_CELL_DIFFERENTIATION).  Thus,  recruiting
Tregs to acquire an immunosuppressive phenotype may be
a common mechanism in ccRCC and obesity.

With advancements in research, the functions of tumour-
infiltrating  Treg  cells  is  gradually  being  understood.
Research  on  Tregs  has  progressed  from  identification  to
Treg-based  therapies.15  Tregs  depletion  has  become  a
promising approach for suppressing antitumour immunity.15

Furthermore, several studies have demonstrated that Treg
depletion  cannot  only  suppress  tumours  but  also  can
enhance the efficacy of cancer vaccines.16

The identified hub genes strongly correlated with Tregs. To
further  explore  the  potential  immune  value  of  the  hub
genes, three hub genes were selected to construct a signa-
ture using multivariate logistic regression. To evaluate the
value  of  the  signature,  comprehensive  analysis  was
performed.  The results  showed that  different  subgroups of
patients  with  different  clinical  traits  had  different  risk
scores.  Moreover,  immune  infiltration  and  immune  scores
were  different  between  the  high-risk  group  and  low-risk
group. These results indicated that the signature can distin-
guish different clinical traits and immune situations.

Immunotherapy has been a powerful clinical treatment for
cancer.  Numerous  immunotherapy  drugs  have  been
approved  for  clinical  and  preclinical  treatment.  Among
them,  immune  checkpoint  inhibitors  (ICIs)  constitute  a
major  category.  An  increasing  number  of  studies  have
demonstrated  the  efficacy  of  ICIs  for  solid  malignancies.17

On the other  hand,  HLA-related genes are critical  for  a
variety of  diseases,  such as malignancies and infectious
diseases.18  In  terms  of  ICIs,  the  biological  influences  of
several HLA-related genes (such as HLA-I,  HLA-E,  HLA-G,
and  HLA-A)  have  been  extensively  confirmed  in  cancers.19

Several  HLA-related  genes  are  considered  as  promising
targets  for  solid  cancer  immuno-therapy.20  Additionanlly,
several clinical trials involving "anti-HLA" strategies have
been launched.21  In the present study, the expression of
immune  checkpoints  genes  and  HLA-related  genes  was

analysed between high-risk group and the low-risk group.
The results showed that HLA-related genes and immune
checkpoint genes (except for those related to PVR) were
more  highly  expressed  in  high-risk  group.  However,
datasets  for  estimating  the  ability  of  the  signature  to
predict  the  efficacy  of  anti-PD1/HLA  immunotherapy  were
unavailable. Finally, to improve the interpretability and clin-
ical translation potential of the research, six potential FDA-
approved drugs were screened using the CellMiner plat-
form.

The five shared genes identified in this study and some of
the  results  are  consistent  with  previous  research.  For
instance,  Li  et  al.  identified  and  validated  TYROBP  and
CD86,  which are more highly expressed in renal  cancer
tissues, using RT-qPCR.22 Wu et al. screened TYROBP as a
prognostic marker for renal cancer through immunohisto-
chemistry (IHC) and validated its increased expression in
renal cancer.23 Naghdibadi et al. also reported that multiple
genes,  including  PTPRC  and ITGAM,  are  associated  with
immune  infiltration  in  renal  cancer.24  Additionally,
researchers  constructed  a  RCC  circulating  tumour  cell
(CTCs)  model,  detected DEGs between CTCs and ccRCC
tissues,  and  identified  and  validated  two  key  genes,
TYROBP,  suggesting  that  these  genes  may  influence  CTC
survival  by regulating the tumour immune microenviron-
ment.25

This study has several limitations. First, it was a bioinfor-
matics analysis, and in vitro and in vivo experiments should
be performed to  verify  the shared mechanism involved.
Second, the present analysis was only at the transcriptional
level, and data at the DNA and protein levels should be
further collected to validate these conclusions.

CONCLUSION

PTPRC, TYROBP, ITGB2, CD86, and ITGAM were identified as
shared hub genes in obesity and ccRCC. High infiltration of
Tregs resulting in an immunosuppressive phenotype may
act  as  a  common  mechanism  underlying  obesity  and
ccRCC. The TYROBP, ITGB2, and CD86 genes were selected
to construct an immune signature that has a good clinical
and immune performance in ccRCC patients.
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