INTRODUCTION

Preseptal and orbital cellulitis range in severity from minor to potentially lethal complications. There are two distinct disorders with different etiologies. Preseptal cellulitis is a more common infectious process limited to the eyelids in the preseptal region, whereas orbital cellulitis represents a more severe but fortunately less common infection of the orbit posterior to the orbital septum with or without its complications like subperiosteal abscess, orbital abscess or cavernous sinus thrombosis or masquerade as cavernous sinus thrombosis. Some cases could not be classified.

The presentation of preseptal cellulitis is with fever, unilateral tender, red, periorbital and lid swelling. The proptosis is absent with normal visual acuity and ocular movements. In contrast in orbital cellulitis the eyelids are swollen, red and tender. Proptosis and or ophthalmoplegia are present. Optic nerve may be involved in severe cases.

The usual cause of preseptal cellulitis is skin trauma or spread of local or remote infection, whereas the most common causes of orbital cellulitis are ethmoidal sinusitis, infection from adjacent structures like dacryocystitis, trauma and postsurgical.

The patient with tender and red swollen eyelid presents a complex challenge to the ophthalmologist to correctly diagnose the condition. Knowledge of anatomy and pathophysiology of the orbit and relevant examination and investigations are necessary for accurate diagnosis.

As complications of orbital cellulitis are great, it is important to know the risk factors involved in its causation so that adequate measures may be adopted for its prevention. The purpose of the study was to evaluate the frequency and risk factors associated with orbital and preseptal cellulitis.

METHODOLOGY

It was a cross-sectional analytical study of 26 patients with the diagnosis of orbital and preseptal cellulitis, admitted to Khyber Institute of Ophthalmic Medical Sciences, Hayatabad Medical Complex, Peshawar, between July 2003 and December 2006. The patients were divided into two groups. Group I with age 6-16 years and group II between 17-40 years. The clinical features, diagnosis and risk factors were entered on a specially-designed proforma. The risk factors included were trauma, insect bite, localized or systemic infection and postsurgical. Odd ratio and p-values were calculated for potential risk factors.

RESULTS: The frequency of orbital cellulitis was 0.1% of total admission. Out of 26 patients, 42.30% patients were in group I and 57 in group II. In group I, insect bite was the most common risk factor identified in 40% of patients with preseptal cellulitis and trauma as a common cause in 50% with orbital cellulitis. In group II, trauma was the leading cause in 50% of patients with preseptal cellulitis and sinusitis as a common cause in 18.1% with those of orbital cellulitis. In both groups the p-values were found insignificant (p>0.5). Complications included cicatricial ectropion in 44.4% and orbital abscess in 41.1%.

Conclusion: For preseptal cellulitis, insect bite was the most common cause in group I and trauma was the leading cause in group II. For orbital cellulitis, trauma was important cause in group I and sinusitis in group II.
trauma, insect bite, systemic or ocular infection or following retinal detachment, lacrimal or orbital surgery. Clinical findings included fever, pain, watery nose, oedema, periorbital and lid swelling, conjunctivitis, visual acuity, extra-ocular movements, pupil and fundus examination.

Exclusion criteria consisted of other inflammatory conditions of the orbit like erysipelas, tendonitis, periostitis, orbital mucocele or pyocele, actinomycosis, trichinosis, mycotic pseudotumor of the orbit and cavernous sinus thrombosis. Thyroid orbitopathy, pseudotumor and orbital rhabdomyosarcoma were also ruled out.

All patients had blood complete, hemogram, c-reactive protein measurement and blood cultures. They also had roentgenographic examination of the paranasal sinuses and orbital ultrasonography. CT scan was done in patients with orbital or preseptal cellulitis, who failed to respond to medical therapy to rule out orbital or subperiosteal abscess.

All patients were treated with intravenous antibiotic therapy singly or with multiple antibiotic combination. Outcome measurements were risk factors evaluation like trauma, infection, both localized and systemic, sinusitis and postsurgical.

Proportions and percentages of the outcome variables are explained by categories and explanatory variables. Odd ratio and p-values are calculated for potential risk factors.

RESULTS

During the study period, 23,562 patients were admitted in the institute for various eye pathologies. Orbital cellulitis constituted 26 cases. The frequency was thus 0.1%. Nine patients (34.6%) had preseptal and 17 patients (65.3%) with orbital cellulitis. Male patients were 18 (69.2%) and female 8 (30.7%). Eleven patients (42.3%) were in group I and 15 patients (57%) in group II.

The risk factors identified in group I included insect bite, the most common cause in preseptal cellulitis and trauma, the leading cause in orbital cellulitis as in Table I. The odd ratio and p-values for potential risk factors are given in Table II. No statistically significant difference was found between risk factors of preseptal and orbital cellulitis in this group.

Table III shows important risk factors identified in group II with trauma, an important cause in preseptal cellulitis and sinusitis in orbital cellulitis. The odd ratio and p-values for risk factors were determined. Again, no statistically significant difference was found between risk factors of preseptal and orbital cellulitis as given in Table IV.

All patients were treated with intravenous antibiotics. Complications of preseptal and orbital cellulitis are given in Table V with cicatrical ectropion and orbital abscess, the most common.
DISCUSSION

The terms preseptal and orbital cellulitis are used interchangeably, obscuring important differences in their pathogenesis, clinical presentation and appropriate therapy.6 Orbital cellulitis is an acute ophthalmic emergency. Delay in initiation of appropriate therapy may cause blindness and lead to life-threatening sequelae such as brain abscess, meningitis or cavernous sinus thrombosis.7

Since the potential for complications is great, orbital cellulitis must be recognized promptly and treated aggressively. Orbital cellulitis is a rare condition. In the study by Jackson and Baker, preseptal cellulitis was noted in 71% in contrast to orbital cellulitis, which was documented in 28% patients.8 Similarly, higher figures for preseptal cellulitis were reported by Aidan et al. and Uy et al.9,10 In this study, the frequency of orbital cellulitis is 0.1%. The study is the first of its kind to report higher figures for orbital cellulitis. Sixty five point three percent patients were diagnosed as orbital cellulitis and 34.6% with preseptal cellulitis. The exact reason for this is unknown. Probably patients presented only when the disease was serious. Preseptal cellulitis may have been missed and treated elsewhere with antibiotics. In this study, male patients were 69.2% and female 30.7%. In a study by Negeswaran et al. 73% of patients were male.11 Chaudhry et al. has given figures of 62.3% male and 37.6% female as found in his study.12

The average age of patients with orbital cellulitis was 25.7 years (ranging from 1 month to 85 years) in Chaudhry et al. series,12 while 52% patients were 18 or more years of age in Hodges and Tabbara study.13 In this study, 42.3% of patients were between 6-16 years of age and the remaining 57.6% patients were between 17-40 years.

Aidan et al. documented that preseptal cellulitis was associated with sinusitis in 48.5%, to ocular infection in 31.4%, to an infected wound in 17.1%,9 while skin lesions in children and dacyrocystitis in adults were the most common predisposing factors in the study by Liu et al.14 In the present study, insect bite was identified in 40% children and trauma in 50% as risk factors for preseptal cellulitis in adults. In case of insect bite, the mechanism of infection is a micropuncture of the skin of eyelid leading to entry of microorganisms causing preseptal cellulitis.

In this study, risk factors identified for orbital cellulitis were trauma in 50% and sinusitis in 33.3% in children and sinusitis in 18.1% and non-Hodgkin’s lymphoma in 9.0% among the adults. Sinusitis related cellulitis is by far the most common and usually secondary to ethmoidal sinusitis. Post-traumatic orbital laceration usually develops within 3 days of an injury that penetrates the orbital septum. Liu et al. and Moloney et al. reported sinusitis as the commonest cause.14,15 Similarly, Robinson et al. found that 70.3% cases had significant sinus disease and one case was found to have squamous cell carcinoma of the nasal cavity.16 Chaudhry et al. reported sinus disease as the most common predisposing cause in 39.4% followed by trauma in 19.7%.12 It can also be caused by dental infection and external ocular infection.17

The most common complication seen in preseptal patients in the present study was cicatrical ectropion in 44.4%. It was found with more severe disease and slow response to treatment, which ended in complications. In comparison and contrast, Uy et al. and Sobol et al. reported no permanent sequelae in their studies as a result of preseptal cellulitis as the disease resolved with antibiotics in all cases.10,18

Rodriguez et al. in a retrospective study of 107 pediatric patients identified orbital cellulitis in 36 patients with 23 subperiosteal abscesses, 3 orbital abscesses and 3 intracranial complications.19 Shaikh et al. has reported orbital cellulitis masquerading as cavernous sinus thrombosis.2 In this study, complication of orbital cellulitis included orbital abscess in 41.1%, panophthalmitis in 17.6%, and subperiosteal abscess in 11.7% while cicatrical ectropion was seen in 44.4% of patient preseptal cellulitis. In Uy et al. and Sobol et al. studies, preseptal cellulitis resolved with antibiotics in all cases with no untoward sequelae.10,18

In the present study, visual acuity improved in 23.5% eyes and 17.6% eyes suffered permanent visual loss because of evisceration for unresponsive endophthalmitis. Chaudhry et al. has commented in their study that visual acuity improved in 16.1% and worsened in 6.2% including 4.3% eyes that sustained complete loss of vision, which was attributed to the delay in correct diagnosis and timely intervention.12 Ferguson and McNab reported no patient with permanent visual impairment other than one case of enucleation for endophthalmitis that had caused orbital cellulitis.20 Liu et al. described only one case of permanent ocular motility impairment after removal of the orbital foreign body.14

In the present study, none of the preseptal cellulitis patients suffered any visual impairment. Similar findings are reported by Uy and Tuano in their report of preseptal and orbital cellulitis in a developing country i.e. Philippines.10

Optimal treatment of patients with orbital cellulitis depends on how accurately the disease is classified and the appropriateness with which antibiotics and surgery are used to treat the disease. CT or MR scan is the most helpful and useful tool in identifying patients requiring surgical treatment.3 Culture of infected paranasal sinuses or pus from abscesses is most likely to yield positive results.20 In the Rodriguez et al. review study...
computed tomography identified retroseptal damage in 36 patients with 23 subperiosteal abscesses, 3 orbital abscesses and 3 intracranial complications. Sixty nine percent of the patients were treated with a single antibiotic (cefotaxime, cefuroxime or amoxicillin clavulonic acid) while 31% underwent multiple antibiotic therapy. Only 8.4% required surgery. In Gomez et al. study, antibiotics alone were effective in all 97 patients, but 16% required paranasal sinus or orbital surgery.\(^\text{19}\) In this study, orbital cellulitis was managed with intravenous antibiotics initially in all cases. Cefotaxime or cefuroxime alone was used in 52.9%, Benzyl penicillin and gentamicin in 29.4% and Benzyl penicillin and amoxicillin clavulonic acid in 17.6%. Orbit was explored for abscess in 47%, for subperiosteal abscess in 11.7% and 17.6% of patients end up in evisceration. Five point eight percent of patients were put on a combination of systemic steroids and chemotherapy for non-Hodgkin’s lymphoma.

In this study, preseptal cellulitis responded to intravenous antibiotics in all cases. The disease was severe enough to end up in cicatricial ectropion in 44.4% for which retroauricular graft was required. A single antibiotic like cefotaxime was used in 55.5% and combination of Benzyl penicillin and gentamicin in 44.4%.

The main limitation of this study was a small sample size.

CONCLUSION

Insect bite is the most common predisposing factor in preseptal cellulitis and trauma for orbital cellulitis in children, whereas in adults trauma is the leading cause for preseptal and paranasal sinusitis for orbital cellulitis.

REFERENCES